EVALUATION OF THE NEED FOR LONGITUDINAL JOINTS IN BRIDGE DECKS **ON DUAL STRUCTURES** Zhengyu Liu, M.S. Advisor: Brent M Phares

Background

Joints on Bridge Deck □Snow, water and debris Deterioration of deck and girder Advantage of Continuous Bridge Deck: □Slow down corrosion Drawback of Integral Abutment Bridge: □Cracks in the deck

Design Manuals from DOTs: DOTs have no agreement on the maximum bridge width

DOT	Deck Wid	Skew and Span Configuration	
D.C	>88 ft		
Montana	>88 ft		
Nevada	>120 ft	Multiple bridges with large skew	
Illinois	No stage construction	>120 ft	
	Stage construction	>120 ft	
Minnesota	>100 ft		
Iowa	>60 ft		

Objective

Determine the maximum width of a continuous deck

□Study other influential parameters

Abutment Pier Pier Line Section	Bridge Center Line	Pier line <u>Top víew</u> Bridge Center Line	<u>X-section</u> G1-A-T
54 in		North	G1-A-B

Department of Civil, Construction, and Environmental Engineering

Field Testing

- Live-load Testing
- □60 strain transducers (3 sections)
- □Strain at the top and bottom flange
- □A Iowa DOT dump truck (5 load cases)
- Long-term Testing
- □Strain at the bottom of deck
- Temperature at abutment, bottom and mid-depth of deck
- □Longitudinal and transverse displacement

Finite Element Model

- **Development of Model**
- □ANSYS Shell 181 & Beam 4
- □Element size 6in
- □Smear of steel
- Calibration for Live-load Behavior
- □Real bridge is stiffer

-150

Calibration for Crack Pattern

□Annual temperature can crack model

Parametric Study

Parameters	Deck width	Bridge skew	Abutment	Girder spacing	Pier type	No. spans
Study cases	40ft;90ft; 160ft	0°;45°	integral; stub	88in.; 176in.	expansion; fixed	one; three
Results	Minimal	Minimal	Significant	No	No	No

Conclusion

- \Box Strain/crack: ΔT and restraints
- □Integral abutment bridges: crack regardless of bridge width
- □Stub abutment bridges: less crack even with wide width □Other parameters: minimal/no influence

Recommendation

- □Stub abutment: if crack is a major concern
- □ Isolation of abutment from soil
- □ Vertical expansion joints in abutment
- □Increasing the deck temperature steel
- Diagonal steel

IOWA STATE UNIVERSITY

<u>Díagonal steel</u>

IOWA STATE UNIVERSITY

Girder type steel; concrete No

Isolation pad Diagonal steel (No.6@5 in.)