IOWA STATE UNIVERSITY **Department of Civil, Construction & Environmental Engineering**

Sulfate Radical Oxidation of 2,4-D using Iron Activation of Persulfate and Peroxymonosulfate

•	Introduction Compounds such as pesticides are persistent and toxic in the environment. Advanced oxidation are used to degrade these compounds. Sulfate radicals (SO_4 -•) are stable with high oxidizing power	 2,4-1 Oxic Rea Sam Coll 2,4-1
•	Sulfate radicals can be generated from > Persulfate $(S_2O_8^{2-})$ > Peroxymonosulfate (HSO_5^{-}) Various activation methods are used: > Heat > Transition metal > UV light > Ultrasound Reactions: > Activator + $S_2O_8^{2-} \rightarrow SO_4^{-\bullet} + SO_4^{2-}$	Molar • Figu mol • Opt deg • Higl dec
•	> Activator + HSO_5^- + OH^- Objectives Overall goal is to evaluate iron as an	(a) 1.00 0 .90 0.80 0.70 0.60 0.50
	activator for the generation of sulfate radicals in the oxidation of 2,4- dichlorophenoxyacetic (2, 4–D), a common pesticide.	0.40 0.30 0.20 4 0.10 0.00 -10

Specific objectives are:

- **Evaluate different molar concentration** of iron and persulfate or peroxymonosulfate on 2,4-D oxidation.
- Investigate the kinetics of 2,4-D oxidation.

Guyu Shi and Say Kee Ong

