Major Professor(s): Shauna Hallmark and Omar Smadi

Problem Statement

Introduction

- Crash fatalities along secondary paved rural roadways in Iowa \bullet accounted for more than 70 percent in 2012.
- Vast majority of rural roadways experience low volume traffic and crashes occurring on them are widespread in nature.
- Traditional "hot-spot" approach versus proactive "systemic" methodology,
- Identify and evaluate one systemic tool for the thesis research project.

Objectives

- Summarize the research of several systemic safety methodologies for rural • paved roadways then evaluate and compare these tools.
- Select one systemic tool and apply it on a sample of roadway mileage.
- Evaluate the selected systemic tool through a sensitivity plan and measure • significance of the sensitivity analysis through a statistical assessment.

Literature Review

The following tools systemic tools/methodologies were identified and summarized as part of this project:

- Minnesota County Roadway Safety Plan (CRSP) 1)
- Federal Highway Administration (FHWA) Systemic Safety Project Selection Toolkit
- United States Roadway Assessment Program (usRAP) Safer Road 3) Investment Plans
- Roadway Departure Crashes at Bridges in Salem County, New Jersey 4
- 5) SafetyAnalyst

Factors considered for tool selection:

- General Availability
- Level of Input Data Required
- Ease of Use
- **Basis of Prioritization**
- Potential for Sensitivity Analysis Insight

Minnesota CRSP Approach (1)

- Objective of this approach was to identify and prioritize three main transportation elements along county roadway systems:
 - 1) Rural Horizontal Curves
 - 2) Stop-Controlled Intersections
 - 3) Rural Segments
- These elements were considered because they consisted of the greatest • number of crashes.
- Implement low-cost safety improvement projects to reduce fatal and major injury crashes.
- Evaluation of risk at each location was based on risk factors/roadway • features.

IOWA STATE UNIVERSITY

Institute for Transportation

Evaluation of Systemic Safety Methodologies on Low-Volume Rural Paved Roadways

Rural Segments Input Data

Buchanan and Dallas Counties = 58 rural segments were identifi

Georges Bou Saab – PhD Student, Iowa State University

	 Prioritization Results Locations with a total star rating of three or more were consider
llaborate	priority locations.
S:	 Low average star rating and standard deviation values denoted roadway network in both counties were consistent and in good
w Maps	
	Sensitivity Analysis and Statistical Evaluation
adways	Importance of Conducting a Sensitivity Analysis
and 156	 Each risk factor in the initial assessment and prioritization wa equally.
	 Measure whether a change in the weight/coefficient of risk factors

Minnesota CRSP approach would have a significant change in the ranking

Statistical Test Selected

- Kendall Rank Correlation Test (non-parametric)
- Kendall's tau coefficient is used as a measure of association between two measured quantities.
- Kendall Tau-b Coefficient

- Three sensitivity analysis approaches were designed:
 - 1) Sensitivity Analysis Approach 1: Basic Application
 - 2) Sensitivity Analysis Approach 2: Engineering Judgment and Point
 - 3) Sensitivity Analysis Approach 3: Variable Data Input and Point
- Weights of risk factors were changed from one to two in most cases.

dentified.	 Shift in ranking of sites was not statistically significant. Third sensitivity analysis approach generated the lowest tau value
were	 Top "20" Shift Analyses Statistical results were insignificant, thus performed basic des statistics
ied.	 Computed percentage of sites that shifted from the list in com the initial ranking. More than 85 percent of locations shifted by less than 25 percent

www.intrans.iastate.edu

red higher that the condition.

lues. scriptive nparison to

cent.