IOWA STATE UNIVERSITY **Department of Civil, Construction & Environmental Engineering**

Author: Alireza Sassani Co-Authors: Halil Ceylan, Sunghwan Kim, Kasthurirangan Gopalakrishnan, and Peter C. Taylor

Deicing of Concrete Pavements

General Constituents of ECC

What is the Conductive Phase?

Conductive fibers and/or granular materials which could be substituted for part of aggregate in concrete

Basic Mechanism

The volume of conductive materials in the concrete matrix should exceed a certain value called "PERCOLATION THRESHOLD"

At upper levels of the percolation threshold, conductive materials, being in contact with each other, build up a conductivity network inside concrete

(PEGASAS) and Iowa State University (ISU) for supporting this study.

Carbon based conductive materials including carbon fibers (CF) and carbon powders (CP) are an alternative to steel products in ECC mix design

Problem: Use of Steel Fiber in ECC

• Use of steel fiber can create durability, aesthetic and safety concerns Use of steel fiber should is avoided in critical transportation infrastructure applications

Alternative Solution

Objectives

• To develop a reliable ECC mix design for critical transportation infrastructure system trough successful and safe application of carbon products

Requirements of optimum ECC mix design **Electrical conductivity**

- Strength and workability
- ✓ Durability
- **Economical efficiency**
- **Safety requirements**

	 Investi materia Detern materia Develo Investi thresh Detern Adjust streng Adjust streng Make 4 Perforn thawin evalua
がない	
and the second second	Carbon fib considerably concrete work
おぼうたいで	 Significan conductiv Increa Using and Cl
言語が不合	Use of the CP is more effective so other require
の一方であるという	The optimum r be achieved by combinations of fiber and semi-s Carbon part
44	STATES IN
Contraction of the second	 0.6 to 1 provide As con propos

Major Professor: Dr. Halil Ceylan

Detailed Research Approach

- igate the most suitable conductive materials (fibrillar and granular als) through mortar tests
- nine percolation threshold through mortar tests using conductive als selected in the previous stage
- op a preliminary ECC mix design based on mortar test evaluations igate the validity of the mortar test determining percolation old for concrete cases
- nine the final conductive materials volume fraction in ECC the ECC mix design to provide the desirable workability and
- th performances
- 4×4 ft. ECC slab with electrodes and test its deicing performance m ECC slab durability evaluation mainly focusing on freezingig resistance and abrasion resistance with other standardized test tions

Conductive Mortar Test Evaluations

Key Findings

% of carbon fiber (CF) with 10 to 15% of carbon powder (CP) e desirable conductivity performance sidering strength and workability, 0.8% of CF with 10% of CP is sed

