In Loving Memory
of Travis ‘T.J.’ Good
Greetings from Ames…where we have just wrapped up our Fall 2010 semester. This newsletter offers the usual updates on faculty, student, and alumni activities, and we trust you’ll enjoy hearing what’s new amongst our CCEE partners and friends.

This newsletter also represents a milestone publication of sorts…with which we are finally completing a shift from hard-copy print versions to a virtual format. As you’d suspect, this change was driven by cost-saving goals, but even then this communication shift reflects the age we live in and overall evolution of news delivery from print to digital formats. What you may also notice is that the news in this edition is a bit more chronologically shifted to a point further back in time given the delay since our last hard copy version. From this point forward, however, you’ll be seeing regular newsletter editions arriving on a quarterly basis, with the next such version reaching you this coming March 2011.

Best wishes from everyone here in Town Engineering, and we’ll look forward to hearing back from you should there be news, ideas, and recommendations you’d like to pass along by which we can further celebrate and enhance our academic success!

Best regards,

James E. Alleman
Department Chair, Professor
Materials Teaching Lab Dedication

On March 24, 2010, the CCEE department hosted a Grand Opening ceremony for the ‘Materials Teaching Lab’ in Room 160 of Town Engineering. Over 50 people attended and the short speeches were given by College of Engineering Dean Jonathan Wickert, Gordon Smith of the Iowa Concrete Paving Association, Bill Rosener of the Asphalt Paving Association of Iowa, as well as CCEE undergrad student, Will Hunnicutt, who expressed that the hands-on experience in the lab setting was the most crucial for students to learn at their best.

CCEE Department Chair Jim Alleman said, “This lab represents a significant industry investment in our department’s academic efforts and the quality of the future engineers who graduate with us.” The ceremony ended with demonstrations in the lab and a tour.

Innovations Award

The Construction Engineering Cornerstone Learning Community was selected to receive the 2010 Learning Communities Outstanding Innovations award.

This award honors members of the Iowa State community who have made new and creative contributions to learning communities. The awards were given at the Learning Communities Institute on Monday, May 10, 2010 at the Scheman Building.

Congratulations to CCEE construction engineering adviser Kristin Mauro (pictured on left) and CCEE lecturer Beth Hartmann for their hard work with the learning community and in submitting the nomination package.

Beth Hartmann says, “I couldn’t be more proud of everyone for their excellent ideas, work, and continuous improvement to make the Cornerstone Learning Community one of the best on campus. I also want to thank Trevor Otto and Jordan Hutchens for their student letters, which were part of our nomination package.”

Honors and Awards

Brad Perkins, CCEE lecturer, received the Joseph C. and Elizabeth A. Anderlik Faculty Award for Excellence in Undergraduate Teaching for the CCEE department.

Ted Millen, civil engineering academic adviser, received the College of Engineering’s Superior Engineering Adviser Award.

Sri Sritharan, CCEE Associate Chair, is now a full professor with Iowa State University.

Halil Ceylan is now an Associate Professor with tenure with Iowa State University.

Distinguished Speaker

Pictured left to right: Clyde N. Baker, Jr., featured speaker; Dennis Hoover, son of Jim Hoover; Craig Denny, patron for Hoover Chair; and Richard Handy, distinguished alumnus.

Clyde N. Baker, Jr. served as the James M. Hoover Distinguished Lecturer at the 34th Annual ASCE Geotechnical Conference on March 4, 2010. Dr. Baker is Senior Principal Engineer at STS/AECOM in Vernon Hills, Illinois. Dr. Baker is a member of the National Academy of Engineering and world renowned for advancements in the engineering and construction of deep foundations for safe support of the world’s tallest buildings.

Leadership Award

CCEE Senior Lecturer Larry Comicle was among those that were recognized at the 10th annual Engineering Student Leadership Banquet on February 8, 2010 for his contributions as an outstanding adviser and for his work with the ISU Associated General Contractors Student Chapter.

The night’s program highlighted, “Larry oversees the entire cabinet and advises the president. He believes in allowing the cabinet to run the club, and he only steps in when necessary or asked... The single greatest thing Larry has done is recruited for our chapter, but more importantly our department...there would not be 400+ construction engineers if it weren’t for Larry.”
Doug Wood inducted into Hall of Fame

CCEE's Assistant Scientist Doug Wood is among ten former Cyclone greats who were inducted into the ISU Hall of Fame on Oct. 8 in a special ceremony at the Gateway Center Hotel in Ames. The inductees were also honored at halftime of the Iowa State-Utah football game the following day.

Wood says, "I am very appreciative of the Iowa State University Letterwinners Club for voting me into the Athletic Hall of Fame. Even though Men's Gymnastics is no longer part of the Iowa State athletic program I am happy that I again have the opportunity to represent a program that was once one of the best in the nation."

Since the program’s inception in 1997, there have been 129 individuals inducted.

Doug Wood receives Carroll Ringenberg award

Doug Wood is also the recipient of the Iowa State University Carroll Ringenberg Award, which honors a long-term professional and scientific staff member with:

- Extraordinary dedication to the ISU community
- A spirit of goodwill for ISU
- A history of excellence in the service to others at ISU

Wood was nominated by CCEE Professor Terry Wipf who said, "Through his employment within the CCEE Department for more than 30 years, Doug has gone beyond the ‘call of duty’ consistently to provide excellent service to staff, students and programs exhibiting a true spirit of goodwill."

senator visit

On January 27, 2010, Senator Hubert Houser (left) of District 49 in southwest Iowa visited CCEE Professor Hans van Leeuwen (right) about his research in fungal processes as applied to the ethanol industry and discussed ways the State of Iowa could possibly support this research.

Senator Houser is a Ranking Member of the Agriculture and Economic Growth committee and also serves on the Ag and Natural Resources Appropriations subcommittee.

research video

CCEE Professor Sri Srinarayan completed Caltrans bridge model seismic tests as part of a Caltrans-sponsored research effort at Iowa State University. Srinarayan says, "The test was a great success and proved that Caltrans can actually save millions of dollars by simplifying the needed retrofit for about 30-40 bridges.

See the videos of Dr. Srinarayan’s work at http://www.ccee.iastate.edu/news/news-article/article/9265/647.html.

Iowa State engineers design power structures that help keep the lights on

Written by Mike Krapfl, ISU News Service. Photo by Bob Elbert.

AMES, Iowa - The metal poles that carry power lines across the country are built to take whatever blows at them. So they’re big and round and sturdy - as much as 12 feet in diameter and 100 feet high.

But transmission poles can still fail under the stress of extreme ice and wind. They could also be vulnerable to an infrastructure attack. And when one of them falls, others are pulled down until heavy dead-end structures stop the cascading collapse.

“If a structure can deform sufficiently, it can allow the rest of the system to use reserve strength from other structures,” Rouse said. “It allows the next pole down the line to share the load of ice, wind, a broken line or an attack, rather than forcing one pole to withstand the load on its own.”

Rouse and Faber have designed hinged poles that don’t need a crane for installation, so they’d be easier to raise. If they’re exposed to an extreme load, they could be repaired rather than replaced. They would resist cascading failures so utilities could do away with the expensive dead-end structures. And, they would allow power companies to provide better and more reliable service.

Rouse and Faber said the key was to take a new approach to structural design. “We’re designing a structure based primarily on its deformation ability rather than its strength,” Rouse said.

The result is a nominally rectangular pole with a built-in hinge near the base. There are metal plates on either side of the hinge that act as replaceable structural fuses - they stretch and buckle when the pole sustains an extreme load, allowing it to deflect while shielding the rest of the pole from damage.

There are also tendon cables running up and down the inside of the pole that resist stretching and work to keep the pole upright. And so when there’s a failure, the fuses bend, the hinge pivots, the interior cables tighten and nearby poles are allowed to pick up some of the load.

“If a structure can deform sufficiently, it can allow the rest of the system to use reserve strength from other structures,” Rouse said. “It allows the next pole down the line to share the load of ice, wind, a broken line or an attack, rather than forcing one pole to withstand the load on its own.”

Rouse and Faber have used support from Iowa State’s Electric Power Research Center to successfully test a prototype pole and are working to secure a patent. They also say the utility and power structure industries have expressed interest in their technology.

The time is right for better power structures, Rouse said.

“The country is in the midst of a major shift toward wind power,” he said. “We’ll be building a lot of transmission lines over the next 20 years. We really need to address these reliability and security issues.”

Rouse and Faber have designed hinged poles that don’t need a crane for installation, so they’d be easier to raise. If they’re exposed to an extreme load, they could be repaired rather than replaced. They would resist cascading failures so utilities could do away with the expensive dead-end structures. And, they would allow power companies to provide better and more reliable service.

Rouse and Faber said the key was to take a new approach to structural design. “We’re designing a structure based primarily on its deformation ability rather than its strength,” Rouse said.

The result is a nominally rectangular pole with a built-in hinge near the base. There are metal plates on either side of the hinge that act as replaceable structural fuses - they stretch and buckle when the pole sustains an extreme load, allowing it to deflect while shielding the rest of the pole from damage.

There are also tendon cables running up and down the inside of the pole that resist stretching and work to keep the pole upright. And so when there’s a failure, the fuses bend, the hinge pivots, the interior cables tighten and nearby poles are allowed to pick up some of the load.

“If a structure can deform sufficiently, it can allow the rest of the system to use reserve strength from other structures,” Rouse said. “It allows the next pole down the line to share the load of ice, wind, a broken line or an attack, rather than forcing one pole to withstand the load on its own.”

Rouse and Faber have used support from Iowa State’s Electric Power Research Center to successfully test a prototype pole and are working to secure a patent. They also say the utility and power structure industries have expressed interest in their technology.

The time is right for better power structures, Rouse said.

“The country is in the midst of a major shift toward wind power,” he said. “We’ll be building a lot of transmission lines over the next 20 years. We really need to address these reliability and security issues.”

Rouse and Faber have designed hinged poles that don’t need a crane for installation, so they’d be easier to raise. If they’re exposed to an extreme load, they could be repaired rather than replaced. They would resist cascading failures so utilities could do away with the expensive dead-end structures. And, they would allow power companies to provide better and more reliable service.

Rouse and Faber said the key was to take a new approach to structural design. “We’re designing a structure based primarily on its deformation ability rather than its strength,” Rouse said.

The result is a nominally rectangular pole with a built-in hinge near the base. There are metal plates on either side of the hinge that act as replaceable structural fuses - they stretch and buckle when the pole sustains an extreme load, allowing it to deflect while shielding the rest of the pole from damage.

There are also tendon cables running up and down the inside of the pole that resist stretching and work to keep the pole upright. And so when there’s a failure, the fuses bend, the hinge pivots, the interior cables tighten and nearby poles are allowed to pick up some of the load.

“If a structure can deform sufficiently, it can allow the rest of the system to use reserve strength from other structures,” Rouse said. “It allows the next pole down the line to share the load of ice, wind, a broken line or an attack, rather than forcing one pole to withstand the load on its own.”

Rouse and Faber have used support from Iowa State’s Electric Power Research Center to successfully test a prototype pole and are working to secure a patent. They also say the utility and power structure industries have expressed interest in their technology.

The time is right for better power structures, Rouse said.

“The country is in the midst of a major shift toward wind power,” he said. “We’ll be building a lot of transmission lines over the next 20 years. We really need to address these reliability and security issues.”

Rouse and Faber have designed hinged poles that don’t need a crane for installation, so they’d be easier to raise. If they’re exposed to an extreme load, they could be repaired rather than replaced. They would resist cascading failures so utilities could do away with the expensive dead-end structures. And, they would allow power companies to provide better and more reliable service.

Rouse and Faber said the key was to take a new approach to structural design. “We’re designing a structure based primarily on its deformation ability rather than its strength,” Rouse said.

The result is a nominally rectangular pole with a built-in hinge near the base. There are metal plates on either side of the hinge that act as replaceable structural fuses - they stretch and buckle when the pole sustains an extreme load, allowing it to deflect while shielding the rest of the pole from damage.

There are also tendon cables running up and down the inside of the pole that resist stretching and work to keep the pole upright. And so when there’s a failure, the fuses bend, the hinge pivots, the interior cables tighten and nearby poles are allowed to pick up some of the load.

“If a structure can deform sufficiently, it can allow the rest of the system to use reserve strength from other structures,” Rouse said. “It allows the next pole down the line to share the load of ice, wind, a broken line or an attack, rather than forcing one pole to withstand the load on its own.”

Rouse and Faber have used support from Iowa State’s Electric Power Research Center to successfully test a prototype pole and are working to secure a patent. They also say the utility and power structure industries have expressed interest in their technology.

The time is right for better power structures, Rouse said.

“The country is in the midst of a major shift toward wind power,” he said. “We’ll be building a lot of transmission lines over the next 20 years. We really need to address these reliability and security issues.”

Rouse and Faber have designed hinged poles that don’t need a crane for installation, so they’d be easier to raise. If they’re exposed to an extreme load, they could be repaired rather than replaced. They would resist cascading failures so utilities could do away with the expensive dead-end structures. And, they would allow power companies to provide better and more reliable service.

Rouse and Faber said the key was to take a new approach to structural design. “We’re designing a structure based primarily on its deformation ability rather than its strength,” Rouse said.

The result is a nominally rectangular pole with a built-in hinge near the base. There are metal plates on either side of the hinge that act as replaceable structural fuses - they stretch and buckle when the pole sustains an extreme load, allowing it to deflect while shielding the rest of the pole from damage.

There are also tendon cables running up and down the inside of the pole that resist stretching and work to keep the pole upright. And so when there’s a failure, the fuses bend, the hinge pivots, the interior cables tighten and nearby poles are allowed to pick up some of the load.

“If a structure can deform sufficiently, it can allow the rest of the system to use reserve strength from other structures,” Rouse said. “It allows the next pole down the line to share the load of ice, wind, a broken line or an attack, rather than forcing one pole to withstand the load on its own.”

Rouse and Faber have used support from Iowa State’s Electric Power Research Center to successfully test a prototype pole and are working to secure a patent. They also say the utility and power structure industries have expressed interest in their technology.

The time is right for better power structures, Rouse said.

“The country is in the midst of a major shift toward wind power,” he said. “We’ll be building a lot of transmission lines over the next 20 years. We really need to address these reliability and security issues.”
ISU research aims to end potholes

Reprinted from KCCI.com from March 4, 2010

AMES, Iowa - Potholes are expected to be a big problem in Iowa this year, but researchers at Iowa State University are working on a possible long-term solution.

Potholes form when melting water seeps into pavement and then refreezes and expands at night. “It doesn’t do it in a uniform way, and then we have trucks and heavy loads going across that damage the pavements,” said ISU professor Chris Williams.

He is doing experiments to prevent pothole damage by adding different materials, like recycled shingles, to asphalt. “The fibers create good added strength in our asphalt pavements that will help with this freeze-thaw action,” Williams.

Williams said he hopes to test a bio-asphalt made from corn stalks and switch grass in a construction project over the summer. He said he worked with a private contractor to test the shingles last year with positive results. “(It’s) very environmentally friendly, being more cost-effective and we’re seeing improved performance thus far,” he said.

Williams said all three elements are important factors as he looks for improved performance thus far, “he said. The latest project that is consuming most of her time and will for the next 5 years is the National Ecological Observatory Network (NEON). This project will collect data across the United States on the impacts of climate change, land use change and invasive species on natural resources and biodiversity.

NEON is a project funded by the National Science Foundation, with many other U.S. agencies and Non-Governmental Organizations cooperating. NEON will be the first observatory network of its kind designed to detect and enable forecasting of ecological change at continental scales over multiple decades. The data NEON collects will be free and openly available to all users. For more information on this continental scale project please see www.neoninc.org.

Furthermore, Chris Williams

All Bitar is a Resident Engineer at Dulles International Airport, where he has been since promoted to Senior Resident Engineer.

The program Management contract was re-bid and, as a result, Ali stayed at the same position but changed his career to being part of a balanced and sustainable solution to America’s energy paradigm. Mark currently has been involved in project development and EPIC project delivery of ag and food-related projects for 30 years. His experience includes grain handling and storage, feed mills, soybean crush, and Biofuels (ethanol and biodiesel). Mark is passionate about Biofuels, especially corn-based ethanol and biodiesel made from yet-to-be commercialized sustainable feedstocks, biomass utilization, and a sensible approach toward the clean utilization of coal, our most abundant domestic fossil energy source. He has dedicated the rest of his career to being part of a balanced and sustainable solution to America’s energy paradigm. Mark currently is a business developer for an A/E firm and resides in Ankeny.

Alumnus Update

Elizabeth Hunter, PE. (BSCE and Environmental Studies ’97) In February 2010, Elizabeth was confirmed as an Associate at Leo A Daly. She has been with the firm for 73 years. She is currently licensed as a Professional Civil Engineer in five states and Puerto Rico and is also a LEED Accredited Professional since 2003.

In her time with the firm, she has been managing projects for a variety of clients, including the private developers, U.S. Citizenship and Immigration Services, National Park Service, U.S. Coast Guard, projects at several Forts around the U.S: Fort Carson, Fort Lewis, Fort Bliss, etc.

The latest project that is consuming most of her time and will for the next 5 years is the National Ecological Observatory Network (NEON). This project will collect data across the United States on the impacts of climate change, land use change and invasive species on natural resources and biodiversity. NEON is a project funded by the National Science Foundation, with many other U.S. agencies and Non-Governmental Organizations cooperating. NEON will be the first observatory network of its kind designed to detect and enable forecasting of ecological change at continental scales over multiple decades. The data NEON collects will be free and openly available to all users. For more information on this continental scale project please see www.neoninc.org.

Alumnus Update

Mark Vermeer (BSCE ’76) After receiving his degree in Civil Engineering in 1976 and has been a licensed PE since 1981. In 1988 Mark obtained his MBA from the University of South Dakota. Mark has been involved in project development and EPIC project delivery of ag and food-related projects for 30 years. His experience includes grain handling and storage, feed mills, soybean crush, and Biofuels (ethanol and biodiesel). Mark is passionate about Biofuels, especially corn-based ethanol and biodiesel made from yet-to-be commercialized sustainable feedstocks, biomass utilization, and a sensible approach toward the clean utilization of coal, our most abundant domestic fossil energy source. He has dedicated the rest of his career to being part of a balanced and sustainable solution to America’s energy paradigm. Mark currently is a business developer for an A/E firm and resides in Ankeny.

Alumnus Update

Nizar Hamad (BSCE ’83) After graduation from ISU, Nizar went on and pursued a second BS in Computer Science from the Univ. of Maryland at College Park and graduated Summer of 1988.

He worked for one year at MCI while he finished his second BS, then in April 1986, he joined The Lane Construction Corp. He worked at Lane as field engineer building highways, bridges and Metro stations. He spent five years at Lane before joining British Telecom (BT) as a software engineer. He spent 12 years at BT in various capacities.

In 1996, Nizar enrolled in MBA program at Strathclyde University in Glasgow, Scotland, United Kingdom and graduated in 1999.

In 2002, he joined Electronic Data Systems (EDS) as a software development manager. In 2009, Hewlett Packard (HP) bought EDS and was integrated into HP and renamed HP Enterprise Services.

Nizar is currently employed as Service Delivery Manager for HP’s US Public Sector division. He is responsible for all service delivery to US Treasury, Federal Deposit Insurance Corp (FDIC), Security and Exchange Commission (SEC) and Pension Benefits Guaranty Corp (PBGC).
Dr. David Sabatini (middle) with keynote speaker and Pulitzer Prize-winning historian David McCullough (left) and David Boren, founder of Oklahoma Foundation.

David Sabatini (PhDCE ’89) - Currently a professor of civil engineering and environmental science at the Univ. of Oklahoma, David Sabatini, received the Oklahoma Medal for Excellence in Teaching at a Research University during the Oklahoma Foundation for Excellence Academic Awards Banquet in Tulsa, OK on May 22, 2010.

The prestigious award is presented to only one Oklahoma educator a year at the research university level. David is a Ross Boyd Professor and Sun Oil Company Endowed Chair at the OU School of Civil Engineering and Environmental Science, received his BS from the Univ. of Illinois, MS from Memphis State Univ. and PhD from Iowa State Univ. and joined the OU faculty in 1989. ■

Mark Kerper (BSCE, ’77) died Saturday, July 17, 2010, in an automobile accident in Dubuque County at the age of 55.

Mark was born July 31, 1954, in Sherrill, the son of Anthony and Iola Jaeger Kerper. He graduated from Dubuque Wahlert High School. He then attended Loras College and the University of Wisconsin-Platteville before getting his degree at Iowa State University in civil engineering in 1977. Mark and wife Karen Allen lived in Ames where Mark was a Civil Engineer PE., at the Iowa Department of Transportation since in 1977. Mark enjoyed hunting, fishing, cooking, gardening and enjoying time with family. ■

Stevens to become AWWA president in 2011

Jerry Stevens, PE, (BSCE, ’74) was elected as AWWA’s next president-elect. Jerry is currently general manager of the West Des Moines (Iowa) Water Works, has been a member of AWWA for 35 years. He has served on the AWWA Board of Directors and as an AWWA vice-president, as well as in all of the offices of the Iowa Section, including seven years as treasurer and secretary. He received the Fuller Award in 2003 and life membership in 2005. He is a registered professional engineer and has grade IV certifications in Iowa for water treatment plant operator and distribution system operator.

Jerry will join the officer line in June 2010 when the current president-elect, Joe Mantua, succeeds this year’s president, Craig Woolard. Stevens will become AWWA president in June 2011. ■

Scott Thompson, PE, (BSCE ’82)
Project Name: South Health Campus
Phase 1, Calgary, Alberta
Construction Cost: 1.2 billion
Structure: Cast-in Place Concrete
(150,000m3)/ Structural Steel & Metal Deck
Building: 2 levels of underground parkade
(1500 stall), 7 floors hospital (over 3 million ft2), double penthouse on top
Schedule: Started Sept 2007/Completion Dec 2011
Highlights:
• Forming system used was the first in the world from Peri Formwork, Germany
• Each form fit a 9.6m X 9.6m grid
• Forming system used was the first in the world from Peri Formwork, Germany
• Each form had 5 hydraulic motors attached to it with 5 deflection sensors.
• As the concrete was poured, the form deflected, sensor picked up the deflection turned the motors on and jacked it back to its original position. We had 57 panels for this project.
• Had a carriage to move them horizontally so only had to use the cranes to lift them vertically to the next floor. ■
Ninety-Five Years in a Nut Shell
From Dean G. Hughes (BSCE ’40)

Born: Sept 4, 1914 on farm between Humeston & Cambria, Iowa. Moved to farm east of Le Roy at age of three.

Work after high school: Part-time work as farm hand and any other work available, including railroad section hand. Left farm work to join CCC in spring of 1935 and have never driven a tractor!

September 1935: Left CCC with $100 to start school at Iowa State.

Winter 1935: I was broke and dropped out of school. Spent six weeks in February scooping snow in effort to move one train 100 miles from Humeston to Clarinda and reached there on Feb 22.

March 1936: I started back to Iowa State with $50. Obtained job in Engineering Experiment Station helping grad students set up and work with projects at mid term. Worked there until graduation.

Extra Curricular Activities: Engineering and Ward Program Executive Councils.

Fall 1936: I met a young lady who would be my life partner for 61 ½ years after 1941.

Spring 1940: I graduated from Iowa State with a degree in Civil Engineering and went to work as a detailsman for American Bridge Company in Gary, IN.

December 1941: I transferred to American Bridge’s design office in Chicago. There I worked basically with remodelling old U.S. steel buildings and design of structures for new processes. Three years were spent in charge of inspection crew of up to 30 men checking condition of present structures and designing needed repairs.

From 1964 to 1972: I was in charge of structural steel design for new U S Steel Corporation projects in the United States including the Texas Plate Mill and Electric furnace; Minntac Taconite Plant near Virginia, MN & Blast Furnace 13 at Gary Works among others. Due to the down grading of the steel industry in this country I believe only the Blast Furnace and Taconite plant are still in operation under anyone’s ownership. Crew of up to thirty men.

September 1972: Due to type of work involved my group was moved to Pittsburgh. I took early retirement as if I were 65 and went to work in Power Div. of Stearns-Roger in Denver, CO. There I was in charge of designing ducts and supports for retrofitting precipitators and scrubbers between furnaces and stacks for power plants all over the U. S. and had 65 people reporting through me when I retired at the age of 65 in October 1979.

October 1979: We moved to Rolla, MO., my wife’s home territory, and started volunteer career originally as a driver for Meals on Wheels. Kept 3 acres of lawn area in shape as well as 1 acre of garden and berries plus playing at least nine holes of golf five days a week.

August 1987: Moved to Aurora, CO where my basic volunteer work has been cataloging artifacts for the local History Museum since 1980 and helping older people to learn to use a computer for the past seven years. (I learned myself in 1999!) I quit golf at age of 84 and was shooting my age on a par 62 course. Reason: I had too much arthritis in my knees. Those have now been replaced. In addition I had a four way bypass in 2000.

I have lived by myself since Alice’s death in November 2002. I do considerable amount of traveling. Been in all fifty states, driven a car in all but two and spent overnight in all but five.

view photos
We celebrated the 50th anniversary for the construction engineering (Cone) program September 23-25, 2010. The weekend-long event included a informal dinner, a golf outing, a Reiman Gardens tour, a tailgate at the Iowa State vs. University of Northern Iowa football game, and a black-tie optional banquet.

Celebration attendees included CCEE alumni and friends of the industry. The banquet featured the unveiling of the Cone E Hall of Fame and its first three inductees: Tom Jellinger, founder of the Cone program and Ken Lewis and W.A. Klinger, both significant contributors to the program. Another highlight was the dedication of the Tom and Ro Jellinger Laboratory.

The anniversary celebration was a great success and showcased the program’s many accomplishments. Today, the Cone program has awarded 2,185 bachelor’s of science, 100 master’s, and 11 doctoral degrees.

alumnus feature
Paul Giroux (BS ConE ’79) was featured in the Spring 2010 issue of ASPIRE: The Concrete Bridge Magazine for his work with sustainable bridges.

The article features Paul’s work with the TRex Project. Denver’s TRex Project resulted from the Colorado Department of Transportation and the Regional Transportation District teaming to deliver the nation’s first multimodal project to use the design-build delivery method. Seventy-five bridges and tunnels were built as part of the project, which has enhanced national, regional, and local mobility along the I-25 and I-225 corridors.

Travis Konda (PhDCE ’04) was the keynote speaker at the 2010 American Society of Civil Engineers (ASCE) Midwest Student Conference on March 19, 2010 in Brookings, South Dakota. He gave a presentation entitled “Reconnecting the Gulf Coast: Replacing the US-90 Bridge Over St. Louis Bay, Mississippi.”

Travis is currently a Design Engineer for HNTB Corporation in Kansas City, Missouri. While working for HNTB, he has participated in four design-build projects involving rail and highway bridges, including the US-90 Bridge replacement in St. Louis Bay, MS, after the existing structure was demolished by Hurricane Katrina.

For this project, he served first as a designer working on the substructure units and then as the on-site post-design engineer during the construction of the replacement bridge. In addition to the design/build projects, Travis has participated in the design of multiple bridge structures including a steel tied arch crossing the Missouri River at Atchison, KS and a cable stayed structure crossing the Mississippi River at St. Louis, MO.

He earned his BS and MS degree in civil engineering at South Dakota State University, before receiving his PhD from Iowa State in 2004.
The CEE department would like to recognize alumni who have passed away in the last year between mid-January 2010 - end of July 2010. The following list is arranged by graduation decade, then alphabetically.

1950s
Donald Ratekin (BSCE ’50)
Calvin Winey (BSCE ’50, MSCE ’51)
Walter Haven (BSCE ’55)

1960s
Robert Roskopf (BSCE ’61, MSCE ’61, PhDCE ’72)
Marvin Williamson (BSCE ’62)

1970s
George Spevacek (BSConE ’71)
Mark Kerper (BSCE ’77)
David Conlon (BSConE ’78)

2010s
Travis Good (BSCE ’10)

If you would like to submit information for any alumni that have passed away, please email Alumni Records at the Iowa State University Foundation at arecords@foundation.iastate.edu. Or update your records online at the Iowa State University Foundation at:
http://www.foundation.iastate.edu/site/Survey?SURVEY_ID=1320&ACtion_REQUIRED=URL_ACTION_USER_REQUESTS.

In Loving Memory of Travis ‘T.J.’ Good

Faculty, staff and students in ISU’s College of Engineering and the Department of Civil, Construction and Environmental Engineering mourned the loss of civil engineering senior Travis “T.J.” Good, who died unexpectedly on April 13. Initial lab tests at the hospital indicate the probable cause of death was bacterial meningitis.

Travis, 22-years-old, was scheduled to graduate in May 2010. Travis was known for his wonderfully kind spirit, loving personality and remarkable sense of humor. He touched the lives of many people throughout the university, the college and the department and he will be greatly missed.

He is survived by parents, Larry B. and Shirley M. Good; brother, Brandon Good; grandparents, LeRoy and Ida Mehlmann; aunts and uncles, Conne and Jim Beals, Lavonne Krauth, Keith and Phyllis Mehlmann, Phyllis and Kent Berry, Sharlotte and Steve Michel, Barb Wall, Mary Mornin, and Kathy and Denny Esch; cousins and many friends.

Memorials may be given to the Travis Good Scholarship Fund by contacting the CEE department.
AGC students continue to spend their Spring Breaks volunteering

For the fifth consecutive year, Iowa State’s Associated General Contractors Student Chapter took a group of Construction Engineering students to an area in need. Last year, the group spent their spring Break in Palo, Iowa, rebuilding from the floods of the summer of 2008.

This Spring Break, thirty-four students headed to the Cedar Rapids area. They worked mostly in the downtown Cedar Rapids area, where much of the heavy flooding occurred. Austin Davis, Vice President of the AGC Student Chapter, said, “Even after twenty-one months after the devastating disaster, there was still much work to be done to return Cedar Rapids to the thriving city it once was.” Davis also said, “Our hard work and construction skills were put good use and we really enjoyed helping the people in need.” The students worked seven days in total from March 13th through the 19th. The group totaled 2,120 man hours while aiding twenty different families. They helped with framing, subflooring, exterior sheathing, deck building, window and door installation, finish carpentry, and demolition.

Erica Kabat, senior in construction engineering, was among the sixteen selected by the Peer Mentor Subcommittee for the 2009-2010 Exemplary Mentor Award. Erica was the only exemplary mentor awarded in the College of Engineering.

Erica is part of the Construction Engineering Cornerstone Learning Community coordinated by CCEE Construction Engineering Adviser Kristin Mauro and CCEE Lecturer Beth Hartmann.

Exemplary mentors were selected based on such qualities as: initiative, programming, complexity of course role, group facilitation skills, course support and knowledge, and leadership. There are over 300 mentors working with learning communities on campus. This is the 9th year the awards have been given.

Erica Kabat

Seven students from the Construction Engineering Learning Community assisted the University Museums staff in washing, waxing and polishing the bronze sculptures in the Elizabeth and Byron Anderson Sculpture Garden at Morrill Hall and at several other campus Art on Campus sites in April 2010 to help with “spring cleaning.”

Students who participated include: Cory Steffen, Karly Rager, Luke Parker, Trevor Otto, Jessica Pohlman, Tyler Waltz and Stuart Jennings.

Two of our graduate students in CCEE/InTrans received noteworthy awards:

Aikaterini (Catherine) Rentziou won a travel grant (up to $1500 to cover the costs of registration, three nights accommodations at the conference hotel, and travel) to attend a conference on Transportation Finance: Forging a Sustainable Future - NOW! on May 19-21, 2010, in New Orleans, Louisiana. Advisor: Gkritza
Our Civil, Construction and Environmental Engineering faculty and staff at Iowa State University are committed to providing an outstanding academic experience for our 1000+ students!

In order to keep these programs successful, support for the department is essential, particularly to:

- advance lab capabilities,
- continue outreach programs,
- maintain technology, instrumentation and other classroom necessities, and
- develop more educational opportunities.

To help make a difference, we’d certainly encourage you to fill out the form and mail to:

ISU Foundation
2505 University Blvd
Ames, Iowa 50010-8644

Please note: The ISU Foundation handles all University donations, but your gifts will be given to the CCEE department.

Make a Difference

Our Civil, Construction and Environmental Engineering faculty and staff at Iowa State University are committed to providing an outstanding academic experience for our 1000+ students!

In order to keep these programs successful, support for the department is essential, particularly to:

- advance lab capabilities,
- continue outreach programs,
- maintain technology, instrumentation and other classroom necessities, and
- develop more educational opportunities.

To help make a difference, we’d certainly encourage you to fill out the form and mail to:

ISU Foundation
2505 University Blvd
Ames, Iowa 50010-8644

Please note: The ISU Foundation handles all University donations, but your gifts will be given to the CCEE department.

Please contact me about supporting

- endowed chairs and professorships
- scholarships and graduate fellowships
- laboratories and classroom space

I’d like to support the

Civil Engineering Excellence Fund

- $1,000
- $500
- $250
- Other $_______

Construction Engineering Fund for Program Excellence

- $1,000
- $500
- $250
- Other $_______

Richard L. Handy Professorship

- $1,000
- $500
- $250
- Other $_______

Other $_______

- $1,000
- $500
- $250
- Other $__________

Payment Type

- Check enclosed (payable to Iowa State University Foundation*)
- or Credit Card: □ Visa □ Mastercard □ Discover

Card Number______________________________
Exp. Date:_________
Signature______________________________
Phone # and Email_________________________

Iowa State University
Civil, Construction, and Environmental Engineering